
Project Note AP04-2021-01

1

OpenPose Integration into iLex
Thomas Hanke

v 0 2021-01-03 First version of the text
v 1 2021-12-30 First release version: formatting and typo corrections

Introduction
OpenPose is very promising to enable accurate motion analysis on the DGS-Korpus data. For
each frame of a video, OpenPose computes the number of persons visible, and for each person
it determines pixel coordinates of a set of body joints. The 2018 edition of OpenPose adds
coordinates on the face as well on the hands.
All data collected in the DGS-Korpus project, including studio reproductions, underwent
OpenPose analysis (cf. AP04-2018-01), the data is available in the iLex database in a separate
schema.

Inspection of OpenPose Data in iLex
In this report, we identify how OpenPose data are stored in iLex and how they can be
inspected beyond simply querying the data tables.

Database Tables for OpenPose Data
in iLex, OpenPose data is stored in the table openpose.keypoints. openpose.keypoints has the
following fields:

track as integer identifies the movie_track that was the input

to OpenPose
frame the frame number of the record, i.e. a number

between 0 and the duration of the track in
frames

person a number for each person recognized in the
frame, starting with 0 (records with negative
person numbers have been identified as
ghosting and should be ignored)

pose_2d text containing the array of coordinates for
the pose recognizer, i.e. 25 triples of real
numbers, being the x and y coordinate in
screen coordinates plus a real between 0 and
1 as the confidence about the x and y
coordinates reported. The numbers are
enclosed in square brackets. Keypoints not
found are reported as 0,0,0, or the array
contains less numbers.

face_2d text containing the array of coordinates for
the pose recognizer, i.e. 70 triples of real
numbers, being the x and y coordinate in
screen coordinates plus a real between 0 and
1 as the confidence about the x and y
coordinates reported. The numbers are

Project Note AP04-2021-01

2

enclosed in square brackets. Keypoints not
found are reported as 0,0,0.

hand_right_2d text containing the array of coordinates for
the right hand recognizer, i.e. 21 triples of real
numbers, being the x and y coordinate in
screen coordinates plus a real between 0 and
1 as the confidence about the x and y
coordinates reported. The numbers are
enclosed in square brackets. Keypoints not
found are reported as 0,0,0.

hand_left_2d text containing the array of coordinates for
the left hand recognizer, i.e. 21 triples of real
numbers, being the x and y coordinate in
screen coordinates plus a real between 0 and
1 as the confidence about the x and y
coordinates reported. The numbers are
enclosed in square brackets. Keypoints not
found are reported as 0,0,0.

status NULL in most cases, but contains the original
person number for the records filtered out as
ghosting.

The original json output from OpenPose contains additional fields, i.e. the 3d versions of the
coordinates arrays. As 3d analysis is not yet used, these fields would always be empty, so they
are simply left out.

For performance reasons, a second table exists, openpose.tracks. It contains one record per
movie_track for which there are keypoints available:

id the id of the movie_track
width the width of the movie_track input to

OpenPose, relevant for interpreting the x and
y coordinates of the keypoints as those are
between 0 and width/height respectively

height the height of the movie_track input to
OpenPose, relevant for interpreting the x and
y coordinates of the keypoints as those are
between 0 and width/height respectively

target_count the number of persons expected to be visible
in the movie_track. In our case 1 for A and B
perspectives, and 3 for the C perspective.

total_frames the duration of the movie_track in frames, i.e.
a positive integer

frames_with_data the number of frames for this track where
OpenPose has actually found something, i.e.
a number between 0 and total_frames

Please be aware that the openpose.keypoints table is huge, with currently more than 720
million records. It is therefore important to work with the denormalized data in
openpose.tracks whereever possible.

OpenPose Viewer
Apparently, it is very difficult to evaluate the quality of the OpenPose data by only querying
the data tables. So iLex (from version 5.1b37 on) offers a special viewer:

Project Note AP04-2021-01

3

This viewer shows a specific frame of a movie_track with the OpenPose data overlaid to the
video frame.
In the number field in the upper left you can type the number of the frame to be visualized, or
use the step buttons (> steps forward by 1 frame, >> by 10 frames, option->> by 100 frames,
< steps backwards by 1 frame, << by 10 frames, option-<< by 100 frames).

In the Skeleton Color section, you choose which coloring scheme to apply when showing the
keypoints: You can choose to have one color per person or to use the OpenPose style, using
different colors for the keypoints and the “bones” (the connecting lines). For the one-color-
per-person scheme you can also include the ghosting data while the OpenPose style always
suppresses the ghosts.
You can select which of the four recognizers is overlaid. Keypoints are only drawn if their
confidence value exceeds a threshold that can be adjusted on the right end of the user
interface elements.

Project Note AP04-2021-01

4

The tabular input in the middle allows you to specify which bounding rectangles to display.
For up to four bounding rects, you specify the color of the rect and which keypoints are to be
included. By setting a look-behind and look-ahead around the current frame, you cannot only
visualize the bounding rect at the current frame but also the area covered across a range of
frames. Instead or in addition to the bounding rects, you can also display traces of selected
coordinates across time by selecting checkboxes right to the tabular data. Note that is best
used with only very few keypoints selected:

Project Note AP04-2021-01

5

When choosing the keypoints to be displayed, it is best to use the data picker available from
the context menu:

Accessing the OpenPose Viewer

In a Free Query window (“File” menu), you can enter a statement such as

Project Note AP04-2021-01

6

select '63374#125764.6' as openposevideoid

Double-clicking the result will open the movie_track with id 63374 at frame 125764. The
third element, here .6 , is optional and defines the length of the frame range of interest. If
specified, that number will be used as look-ahead together with a look-behind of 0 the default.
As long as the ➜ checkbox is selected, stepping back and forward will adapt the look-behind
and look-ahead to identify the range of interest, but the values can of course be changed
manually.

Similar queries can be stored as scripts, so the Hamburg database contains a script making the
OpenPose viewer available from windows showing movie_tracks:

Here, the SQL code in the script definition looks as follows:

select id as openposevideoid from openpose.tracks where id in ($1)

The reference to openpose.tracks avoids error messages when movie_tracks without
associated OpenPose data have been selected.

Finally, the function is available in the Gear (⚙) menus of tag detail windows:

Project Note AP04-2021-01

7

Here, the SQL definition makes use of a helper function to determine which tracks contain the
video data belonging to the tag and have OpenPose data associated, plus the frame offset for
these tracks. As a result, the function typically opens two windows: One for the frontal
showing the signer, a second for the total showing the signer (plus the other two people in the
setting).

SELECT track||'#'||start_frame||'.'||(end_frame-start_frame) as
openposevideoid FROM tags JOIN LATERAL
openpose.tag2openposetrackandtimeframe(id) on tags.id in ($1)

Ghosting
There are several reasons why there can be more openpose.keypoints records for one specific
frame of one specific track than expected, meaning we have more person ids than
openpose.tracks.target_count:
• There is actually another person visible, e.g. a technician crossing or the moderator

leaving or returning to his/her seat.
• The other informant stands up or stretches high up getting into the camera view.
• OpenPose for some reason does not consider all parts of the signer to belong to the same

individual.
 The first case will mainly occur in breaks, so outside subtasks, and therefore is less of a
concern. In the first two cases we want to throw out the additional person, but have to make
sure that we do not throw out the target informant. In the third case, we need to check whether
we can merge the data into one record as we know the bits belong together.

Person Identification
After removal of ghosting, there should be no need to do any further identification processing
for our camera perspectives A and B as there should be exactly one person left. For the C
perspective, however, there are three persons, and we have to make sure that we know which
person id in the OpenPose data belongs to which informant.
OpenPose works on each frame without information on the neighbourhood and optionally
does some post-processing that the person with a certain id in one frame gets the same id in
the next frame. As OpenPose has to cope with a rather unrestricted matching problem, it

Project Note AP04-2021-01

8

seems a better idea to use the information we have available for our setting. That is, for the C
camera perspective we have three persons from left to right: Informant B (right side view),
moderator (frontal view), informant A (left side view). It seems easier to work from the left-
to-right arrangement than to determine which direction each person identified by OpenPose
is facing.

